
Grant Agreement no: 690770  

 

Ship Lifecycle Software Solutions (SHIPLYS) 

Project Deliverable Report 

 

 
Version:  2.5 

Author: (BMT) 

Contributors: Thomas Koch (AES), Gary Randall (BMT), Rhyan Hoey 
(BMT),  

Internal reviewers: José Ignacio Zanón Millán (Soermar), Ujjwal Bharadwaj (TWI), 
Paul Brown (TWI) 

Deliverable due date: 2017-05-31 

Actual submission date: 2017-09-19 

 

Work package: WP3 

Task: T3.3 

Dissemination level: Public 

Lead beneficiary: BMT 

Status: Final 

 

D3.3 Requirements for the integration of SHIPLYS tools and 

compatibility with existing tools 



 

1 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

VERSIONS 

 

Version Date Reason Editor 

1.0 2017-01-17 First release to internal contributors F de Castillo 

1.1 2017-07-17 New Table of Contents G Randall (BMT) 

2.2 2017-09-08 Release to internal review G Randall (BMT) 

2.3 2017-09-13 Internal review J.I.Zanon (SOERMAR) 

2.4 2019-09-15 Internal review 
U Bharadwaj; Paul 
Brown (TWI) 

2.5 2017-09-18 Finalised Randall/Hoey (BMT) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Disclaimer: This document does not necessarily represent the opinion of the European Commission. Neither the SHIPLYS Consortium nor the 
European Commission are responsible for any use that might be made of its content. 

The SHIPLYS logo cannot be used without permission of the SHIPLYS Consortium Partners. Copyright to this document is retained by the author(s). 

 

Acknowledgement:  

The research leading to these results has received funding from the European Union's Horizon 2020 
research programme under grant agreement No. 690770. 

 

 



 

2 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

EXECUTIVE SUMMARY 

 

The SHIPLYS project focuses on developing and integrating rapid virtual prototyping tools with life cycle tools. 
This is in order to empower European SME designers and production yards to make their own decisions on 
how to optimise early stage activities via a life-cycle approach, both in the realm of optimum ship design and 
when optimising retrofitting and conversion activities. 

This report outlines the requirements needed to ensure software compatibility of any new SHIPLYS tools with 
the existing early design tools. It defines a variety of integration methods and a programming interface that 
supports interaction between disparate software components. Our over-arching requirement is that any 
component to be considered for inclusion in SHIPLYS must be capable of implementing one of these methods 
or at least interacting with another component that acts as a go-between. Such components are embedded 
in an architecture that defines services that operate both between them and at the global SHIPLYS level. 
These service types include meta-data, data, software registry and job services. Many associated factors 
have to be considered, including (a)synchronicity of execution, access authorisation and time to complete a 
given job.  

The report further provides a first sketch of a user interface and a dashboard that allows a designer to track 
their workflow through an activity map as they interact with various tools coupled to the SHIPLYS platform. 

Finally, we include a template for a Software Integration Register in which we record all individual components 
and any detail about them pertinent to their ability to be integrated. A further update to D3.3 will define which 
particular components are to be used in order to address the needs of the three SHIPLYS usage scenarios. 

 

 

 

 

 



 

3 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

CONTENTS 

 

VERSIONS .................................................................................................................................................... 1 

EXECUTIVE SUMMARY ............................................................................................................................... 2 

CONTENTS .................................................................................................................................................. 3 

Abbreviations................................................................................................................................................. 5 

1 Introduction ............................................................................................................................................. 6 

2 Approach ................................................................................................................................................ 7 

2.1 Overview ......................................................................................................................................... 7 

2.1.1 SHIPLYS Integration Technology ............................................................................................. 7 

2.2 Activity model ................................................................................................................................ 12 

2.3 What might the SHIPLYS tool look like? ........................................................................................ 13 

2.4 REST Based Web Service: Functional Requirements ................................................................... 14 

2.4.1 General requirements ............................................................................................................. 14 

2.4.2 Meta Data Service (read-only mode) ...................................................................................... 16 

2.4.3 Data Service (read-write/read-only modes) ............................................................................ 18 

2.4.4 Software Registry Service (read-write/read-only modes) ........................................................ 21 

2.4.5 Job Service ............................................................................................................................ 23 

2.5 Use Cases..................................................................................................................................... 24 

2.5.1 Meta Data Service Use cases ................................................................................................ 24 

2.5.2 Data Service Use Cases ........................................................................................................ 28 

2.5.3 Software Registry Service Use cases ..................................................................................... 30 

2.5.4 Job Service Use cases ........................................................................................................... 33 

2.6 Simple Integration Example ........................................................................................................... 34 

2.6.1 Introduction ............................................................................................................................ 34 

2.6.2 Approaches to Integration ...................................................................................................... 34 

2.6.3 Selection of an approach ........................................................................................................ 34 

2.6.4 General Workflow ................................................................................................................... 35 

2.6.5 Benefits of this integration method ......................................................................................... 35 

2.6.6 Brief description of RSET ....................................................................................................... 35 

2.6.7 Brief description of LCC tool ................................................................................................... 35 

2.6.8 Integration example ................................................................................................................ 36 

2.7 SHIPLYS Integration Suite mock-up .............................................................................................. 37 

2.7.1 User interface overview .......................................................................................................... 37 

3 SHIPLYS Scenario Requirements for integration of rapid virtual prototyping and life cycle tools. .......... 45 



                                                                                                                 

                                                                                                                                           

 

4 

 

3.1 Scenario 1: Optimised design of a novel hybrid propulsion system in a short-route ferry ............... 46 

3.1 Scenario 2: Development of conceptual ship design with inputs from Risk-based Life Cycle 
Assessments ............................................................................................................................................ 46 

3.2 Scenario 3: Development of software to support early planning and costing of ship retrofitting 
accounting for life cycle costs and risk assessments ................................................................................ 46 

4 Software Integration Register ................................................................................................................ 47 

5 Conclusions .......................................................................................................................................... 48 

6 References ........................................................................................................................................... 48 

 

 

 

List of figures 

Figure 1: Data Model structure ...................................................................................................................... 9 

Figure 2: Glue code integration structure ....................................................................................................... 9 

Figure 3: Data access interface integration structure ................................................................................... 10 

Figure 4: Plug-in integration structure .......................................................................................................... 10 

Figure 5: SHIPLYS Activity Model overview ................................................................................................ 12 

Figure 6: SHIPLYS mock dashboard interface............................................................................................. 13 

Figure 7: Principal interaction with API ........................................................................................................ 14 

Figure 8: Mock SHIPLYS Integration Suite Interface ................................................................................... 38 

Figure 9: Start-up screen with prompt for initial settings (from IST spreadsheet tool)................................... 39 

Figure 10: Hull form definition tab of the hull module ................................................................................... 40 

Figure 11: General arrangement module ..................................................................................................... 41 

Figure 12: Structural analysis module .......................................................................................................... 42 

Figure 13: Production analysis module ........................................................................................................ 43 

Figure 14: Life Cycle Cost module ............................................................................................................... 44 

Figure 15: The SHIPLYS Master Matrix to consider potential Applications to be integrated on the SHIPLYS 
platform ....................................................................................................................................................... 45 

 

 



                                                                                                                 

                                                                                                                                           

 

5 

 

Abbreviations  

 

API – Application Programming Interface 

BIM – Building Information Modelling 

CAD – Computer Assisted Design 

CoG – Centre of Gravity 

DAI – Data Access Interface 

DoW – Description of Work 

FEM – Finite Element Modelling 

GUI – Graphical User Interface 

HATEOAS - Hypermedia As The Engine Of Application State 

HCI – Human-Computer Interface 

HTTP – Hypertext Transfer Protocol 

IRI – Internationalized Resource Identifier 

JSON – JavaScript Object Notation 

LCC – Life Cycle Cost 

LCCA – Life Cycle Cost Analysis 

REST – Representational State Transfer 

RSET – Rapid Ship Evolution Tool 

RVP – Rapid Virtual Prototyping 

TTL – Time-To-Live 

URL – Uniform Resource Locator 

URI - Uniform Resource Identifier 

 

 

 

 

 



                                                                                                                 

                                                                                                                                           

 

6 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

1 Introduction 

This report will describe the integration requirements for the tools both developed within SHIPLYS and also 
interfacing requirements for existing tools to interface with SHIPLYS software. For instance, these integrated 
tools may need to be compatible with existing early design tools, such as FORAN and we will determine how 
and what data to transfer data between such CAD systems and production planning systems. 

In particular, we will provide key specifications/constraints for the development of the tools in WP5 and WP6, 
in order to facilitate their integration in WP7. 

These requirements will not be presented as a formal list of specific needs, instead we describe the overall 
ethos that that will allow a variety of tools to interact. That said, there are several desired outcomes that we 
might expect the final SHIPLYS toolset to support, such as; the integration of multiple RVP and LCCA tools; 
support for LCCA tools that deal with varying time windows; the ability to take inputs from physically distributed 
sources; the ability to express risk in a variety of formats; and the need to support intuitive GUI wherever 
possible. 

The SHIPLYS project is technologically positioned at TRL 6/7 in most aspects; the various subsystems – data   
formats, life cycle cost assessments (LCCA) models, virtual prototyping models – have all been developed 
and demonstrated at least in ‘relevant environments’ for their original intended purposes. The thrust of 
SHIPLYS is mainly the integration of methodologies and bespoken data forms and life cycle performance 
outputs to the needs of the marine asset industry in a way that facilitates the uptake of SHIPLYS results by 
SME stakeholders. 

Note taken from the proposal: “The prospective use of "free" software tools could be used in a positive way 
to underline the openness and a potential way forward to lower entry cost for SME yards even further. 
However, our proposal to use open source or free software does not mean to switch to this as the main basis. 
It is important to keep at least one or two established and widely used commercial products at hand, for 
instance FORAN from our advisory partner SENER.  We should also be careful to distinguish between free 
(close source) tools and open source tools. The former ones are often a problem, as the provider will not be 
prepared to modify the product without serious business options but the latter may cause substantial effort to 
get them adjusted to the project's needs. Nevertheless, our experience with open source products has been 
more positive in general.” (Source SHIPLYS proposal) 

 



                                                                                                                 

                                                                                                                                           

 

7 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

2 Approach  

 

2.1 Overview 

 

2.1.1 SHIPLYS Integration Technology 

2.1.1.1 Background 

The solution to be developed in the SHIPLYS project will – on the software side – be dependent on integration 
of various software components such as full-scale applications, analytical programs, smaller or larger utilities, 
database management systems and other data sources, and software libraries. A significant portion of these 
components is expected or known to have existed before the project commenced and is provided by third 
parties or partners, while others will be developed by partners as the project proceeds. 

In general terms, integration of such components must be based on the following assumptions: 

 In many cases, modification of an existing component is either not possible or impractical. This is 
particularly true for commercial third party components which may often appear in the form of a black-
box type of software with no access to sources and limited configuration options. Such components 
will often mandate a specific runtime environment, which cannot be changed. Consequently, 
integration should be possible without any real modification of such components. 

 Components will often operate on some input and output data streams of known formats combined 
with interactive control by the user, e.g. applications performing some sort of heavy-weight 
calculations. It must be assumed that sufficient documentation or similar explanatory material will be 
available such that some “glue” code can be provided in the project for such components to provide 
the required input and control data or consume the output of interest. 

 Alternatively, components may have their own data management capabilities. For this kind of 
component some existing data access interfaces should be available. 

 A further variant may be constituted by some degree of built-in extensibility e.g. by means of scripting 
or plug-ins. This is particularly relevant in highly interactive components such as modelling systems. 

 It should be possible to develop new components with minimal constraints concerning the 
implementation technology, e.g. free choice of runtime platform and programming environment and 
other technical constraints. This is mandated also by the fact that such components will often be based 
or depend on existing algorithms or sub-components and/or reliance on existing know-how among 
development staff involved.  



                                                                                                                 

                                                                                                                                           

 

8 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

2.1.1.2 Design Goals 

The following general design goals can be established for the project: 

 Minimised programming technology constraints for software components: 

o Runtime platform. 

o Programming platform. 

o Language and time zone. 

 Support for distributed operations: components may reside on hosting systems if they are reachable 
via network. 

 Light-weight integration of black-box type components. 

 Maximised support of functional requirements of SHIPLYS. 

2.1.1.3 Data Model Definitions 

One of the most important elements of integration is agreement on the data entities to be communicated 
between participating software components. This is one of the core concepts defined in the DoW. 

Working with a common data model appears as an attractive and elegant solution. However, based on 
experience from precursory projects, some consideration must be given to the following issues: 

 Creation of an appropriate data standard: While many data standards and de-facto standards exist, 
these may not cover all of the relevant engineering and commercial aspects at the required level of 
granularity. However, deriving a new fully integrated model is a significant undertaking and is not within 
the scope of the project. Therefore, an approach based on an amalgamation of various contributing 
standards and rules, such as that used in Building Information Modelling (BIM), may be the best 
approach. 

 Project development dynamics: Given that multiple work packages and tasks occur concurrently within 
the project, modifications and corrections to the data model are likely to be needed as the work 
packages are completed. In order to mitigate this risk, any dependencies of the data model on the 
progress and outcomes of other tasks should be minimised. 

These considerations indicate the need for self-explanatory, machine readable data model definitions that 
may evolve over time. This means that an implementation should not only provide the classical information 
management functions for storing, retrieving or locating instances of data entities but should also provide meta 
data about the underlying model definitions. This is a well-known concept found in various programming 
environments as well as in some data management systems with different levels of functionality. 



                                                                                                                 

                                                                                                                                           

 

9 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

 

Figure 1: Data Model structure 

2.1.1.4 Integration Methods 

Glue code 

This integration method provides functionality to expose component functionality of black-box type software 
via a SHIPLYS compliant REST API. This is particularly useful for non-interactive calculation modules. 

 

Figure 2: Glue code integration structure 

Examples: Standalone module for Weight or CoG calculations, resistance prediction, FEM processor  

Data access interfaces  

This is applicable to systems operating on some sort of data management platform. It can range from simple 
file system level retrieval to full-blown data management system access. 



                                                                                                                 

                                                                                                                                           

 

10 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

 

Figure 3: Data access interface integration structure 

Examples: AVEVA Marine Database retrieval, AutoCAD DXF import, export or drawing extraction, … 

Plug-ins 

Some systems or components will provide mechanisms to extend or tailor their functionality such as a plug-
in API or a scripting environment. This can be used to enable such systems to interact themselves with the 
SHIPLYS platform. For example, this may be realised as menu/user interface additions in user interfaces that 
effect some data retrieval or trigger a calculation in another remote component. 

 

Figure 4: Plug-in integration structure 

Examples: most CAD systems provide similar mechanisms, e.g. AutoCAD, FORAN, AVEVA Marine etc. 



                                                                                                                 

                                                                                                                                           

 

11 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

2.1.1.5 Proposed Solution Ingredients 

REST services – all data management and other server components will be accessible via a REST HTTP 
API utilising JSON encoded payloads. REST over HTTP relies on conventions layered on top of the ubiquitous 
HTTP protocol. The primary reason for using this approach is the flexibility in implementation both in terms of 
actual design of the API itself as well as the relative easiness of support across a wide range of implementation 
platforms and operating systems.  

Data model support – in order to accomplish the required self-documenting data model services and to 
facilitate self-adjusting software components, a meta data interface as part of the REST API will be needed. 
This interface will provide access to (sub-)schemes, entities, attributes and build-in low-level type definitions. 
By providing such interface functionality, consuming software will be able to establish references to its local 
data models. 

Data state – to provide data life-cycle support functions, it shall be possible to accompany any entity instance 
with data state information: version (e.g. as a time stamp), origin (identifying the creating component), quality 
(e.g. vacant [needed but missing], estimated, calculated, validated etc.). 

Function registration – the integration platform will have to provide – through the REST API - a lookup and 
locator function for software components and the functionality supported by them. Components can register 
themselves in terms of component identification and description as well as individual operating instances (e.g. 
CAD system X running on host Y, offering a set of functions Z). A first idea of such functionality may include: 

 Register function (component, name, version, description, required input data, offered output data). 

 Deregister function. 

 Find function (by component, name, description, input or output data). 

 Register instance (host, URL). 

 Deregister instance. 

 Lookup active instance for function. 

Example: 

 https://<server>/find-function/description=weight|centre%20of%20gravity 

 

  



                                                                                                                 

                                                                                                                                           

 

12 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

2.2 Activity model 

In order to facilitate the development of the SHIPLYS tool, an activity model has been composed based on 
the ship design elements of ISO 10303, the Standard for the Exchange of Product model data (STEP). This 
standard allows for the communication between different modules/tools that will be integrated to be explicitly 
resolved. Some additions have been made to account for the life cycle analysis functions to be covered within 
SHIPLYS. 

The activity model essentially consists of a sequence of activities involved in the ship life cycle, with 
connections showing data flows for inputs, outputs, controls and mechanisms associated with each activity 
node. The top-level overview of the activity model is shown in Figure 5 below. A more detailed introduction to 
the activity model concept can be found in D3.1, and a full description of the SHIPLYS activity model is given 
in D3.2. 

 

Figure 5: SHIPLYS Activity Model overview 

The activity model can serve as a guide for integration of the various software components to be utilised by 
the SHIPLYS platform, as it maps the various functions covered by the components and illustrates the input, 
control and output data flows between them. The functionality, inputs and outputs of each software tool can 
be used to determine which functions within the activity model the tool facilitates. The activity model can then 
be used to guide integration and highlight any gaps or overlap in functionality of the software tools. 

  



                                                                                                                 

                                                                                                                                           

 

13 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

2.3 What might the SHIPLYS tool look like? 

Final design of the SHIPLYS offering is still under consideration but there are several broad categories that 
are candidate services. For instance, SHIPLYS might offer remote access to a platform that is natively running 
several integrated tools of interest. Or, we might offer a standalone executable that interfaces to the tools 
already owned by the user. A third possibility is a cloud service that acts as a gateway/exchange between 
differing relevant tools. There are of course more possible architectures than this, and the choice will depend 
on commercial viability (especially with regard to licensing), desirability and the real-world usability of the 
product. Whatever the choice, we can imagine a dashboard-like front end that guides a user through the early 
design process and allows engagement with LCC and risk assessment tools at appropriate junctures.  

 

A mock-up of such a dashboard is presented here and takes inspiration from the activity model just outlined 
in section 2.2. This mock-up is part of a larger design effort that is presented in full in section 2.7 of this report. 

 

 

Figure 6: SHIPLYS mock dashboard interface 

This blank initial screen shows the project workspace before a project has been initiated. The actual tools and 
workflow for the interface are yet to be decided. The overall workflow is divided into modules, with sub-
functions within each module; these are roughly based on the first and second levels of the Activity Model 
respectively. 

Modules are selected using the buttons on the left-hand side of the interface, while tabs are used to access 
different sub-functions within each module. These tabs are displayed on the central pane of the interface, with 



                                                                                                                 

                                                                                                                                           

 

14 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

information and data presented in the top portion and user actions (e.g. buttons to launch other tools) in the 
lower portion. The right-hand pane provides feedback to the user: the upper panel indicates the status and 
current values of various attributes of the ship design in an expandable tree, while the lower one shows an 
interactive graph indicating workflow progress. 

The following section outlines the REST API that underpins the component interaction shown in Fig. 6. 

 

2.4 REST Based Web Service: Functional Requirements 

This chapter describes the functional requirements for the REST API that will be used to enable different 
software parts/components within the SHIPLYS framework to communicate and exchange data via three main 
service components we define. Section 2.5 illustrates possible Use Cases for the functional requirements. 

Figure 7 shows the sequence of main events and activities regarding the usage of the REST API within the 
SHIPLYS framework. The figure shows only part of the sequence and does not include the execution of the 
tool(s) that will be carried out. 

 

 

Figure 7: Principal interaction with API 

 

2.4.1 General requirements 

 

2.4.1.1 HTTP Methods and return codes 

The HTTP-methods GET, POST and DELETE (in very rare occasions) shall be usable with their implied 
semantics and the server shall return common response codes. 

Since most of the requested resources are read-only, the HTTP GET-method is used in most cases. Other 
HTTP methods POST and DELETE are used in all modifying cases, where POST is used for creating, 
updating and DELETE for removing the resource objects. 

 

2.4.1.2 REST over HTTP 

The SHIPLYS system is conceived as a distributed system, in which different components may be spread 
across different physical or virtual systems connected by network. 

The mechanism to facilitate this shall be a REST-style API using HTTP connections [Fielding 2000] [1]. 

The REST API needs to consider best practices concerning: 

1. Nouns – not Verbs convention. 

2. Level of detail (keep the right balance between functional completeness vs. performance vs. API 
complexity). 



                                                                                                                 

                                                                                                                                           

 

15 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

3. API versioning. 

4. Navigation support (e.g. HATEOAS). 

 

2.4.1.3 HATEOAS 

All actions performed within the framework should follow the HATEOAS (Hypermedia As The Engine Of 
Application State) principle [Fielding 2008] [2]. Simplified, this means that the responses from the server must 
contain hypermedia (hyperlinks) that guide the client to the next possible state(s) of the server application. 
Following this principle allows any client to fully interact (exploit the full functionality of the web-service) with 
the server without prior knowledge about the API-structure. The only prerequisite is the initial request-URL 
(root-URL of the web service). 

Example: 

The client sends a GET-request to the root URL of the web service: 

GET /dbs HTTPS/1.1 

Host: api.shiplys.com 

Accept: json 

A possible response from the server could be structured like this: 

HTTPS/1.1 200 OK 

Content-Type: application/json 

{ 

"id": "dbs", 

"href": "https://api.shiplys.com/dbs", 

"offset": 0, 

"limit": 10, 

total: 2, 

"items": [ 

{ 

"id": "database1", 

"href": "https://api.shiplys.com/dbs/db1" 

}, 

{ 

"id": "database2", 

"href": "https://api.shiplys.com/dbs/db2" 

} 

] 

} 

 



                                                                                                                 

                                                                                                                                           

 

16 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

By identifying the content of the href-properties as hyperlinks, the client can identify the next possible steps 
(application states). 

 

2.4.1.4 Resources 

The generic resource class provides the following overall properties inherited by other specific resources: 

 id: Global entity identifier. 

 user: User processing the resource. 

 href: URL of the resource itself to ensure the HATEOAS principle. 

2.4.1.5 Collection Resources and Pagination support 

In order to limit web traffic and increase user readability, the API shall be able to support pagination of 
Collection Resources. This means, whenever a requested resource contains a collection (that potentially has 
a huge number of elements), the API shall return by default only a selected subset of this resource, if not 
stated otherwise by request-parameters. To guarantee unambiguousness, every returned collection shall 
contain the parameters: 

limit: Number of elements returned (the size of the returned collection “window”). 

offset: Index of starting point of the selection (position of the “window”). 

total: Number of elements in total (all elements in the collection). 

Furthermore, the Collection Resources provide a time stamp property in order to ensure an unambiguous 
working state. 

 

2.4.1.6 Protected Resource Access via OAuth 2.0 

Some of the data stored in the services or transported via the API are confidential and need to be restricted 
in access as well as protected while transported. OAuth 2.0 [Hardt 2012] [3] shall be used to guarantee data 
(access) security. OAuth 2.0 is an industry standard that addresses these problems via role separation 
(resource owner, client, authorization server, resource server) and different grant types. Focus is on simplicity 
for application developers and end users. 

 

2.4.2 Meta Data Service (read-only mode) 

Provides detailed information about the data structures (also referred to as the data model) used for 
representing ship design data, life-cycle data as well as design process states. It should be noted that the 
functions of this service are not necessarily specific to the ship design domain, but rather for representing 
data structure information in general. 

 

2.4.2.1 Generic Data Schema handling 

The Meta Data Service should be capable of handling multiple schemas and versions thereof. 



                                                                                                                 

                                                                                                                                           

 

17 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

The schema is specified by its name, description, revision, state and copyrights/intellectual property 
information. The state will express whether a schema is experimental, under test, in production use, 
deprecated or withdrawn. 

The schema considers the following 4 categories of data structure information: 

 Basic Data types: represent commonly used data types to define the properties of the entity types. 
These should include: 

o Boolean. 

o Integer/Long/Count. 

o Real/Double 

o Measure (further detailed by quantity and default unit) 

o Date, Time, Datetime 

o Enumerated values 

 Example (from ISO 10303-218 2004, in EXPRESS syntax): 

 TYPE plate_type = ENUMERATION OF (bent_plate, bracket_plate, build_template, 

chamfer_plate, clip_plate, flat_bar, knuckled_plate, shell_plate, 

standard_plate, swedged_plate); 

o String 

 Sequences: Lists, Sets, Maps. 

 Entity/Structured types: represent object types described by their properties. Entity types support 
multiple inheritances such that properties can be inherited from one or more other parent entity types. 
Entity types form the main content of a schema. An example (in EXPRESS syntax) is: 

o ENTITY plate inherits from steel part. 

 Properties: represent the properties of an entity type, they are defined as basic data type or an entity 
type. 

 

2.4.2.2 Process Model 

The Meta Data Service delivers the read-only process model definition that underlies the SHIPLYS – 
Framework. It provides a formal description of the early ship design process, linking activities via transitions. 
Therefore, data entities are used to represent the particular activities, transitions, data exchanged (flows) 
between the activities and the executing mechanisms. As well as the general properties like the name and 
description the entity type activity contains the following properties: 

 Transitions 

 Inputs 

 Outputs 

 Controls 

 Flows (Accumulation of Inputs, Outputs, Controls) 



                                                                                                                 

                                                                                                                                           

 

18 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

 Mechanisms 

 Incoming activities (i.e. the set of activities linked by preceding transitions) 

 Outgoing activities (i.e. the set of activities linked by succeeding transactions)  

Each of the properties is also represented by a particular entity type with specific properties. 

The retrieval of instances of the process model items enables clients like the Design Process Monitor to 
analyse the current status and the input needed to carry out next steps regarding the ship design, life-cycle 
or other tasks. 

 

2.4.2.3 Ship Design Data Model 

The Meta Data Service shall store the data model that is an essential underpinning of the SHIPLYS framework 
to represent both the design process as well as any design data of a ship. The Meta Data Service shall be 
able to store more than one (version of the) data model. If requested, the Meta Data Service shall return the 
formal definition of (single) data types to the client. The data model (data schema) shall contain resources 
such as: 

 Schema: providing a detailed description of the selected data model (or schema version) 

 Types: different data types of the data model such as (below only some examples are used) 

• Plates.  

• Compartments. 

• Spacing tables. 

• … 

 Properties: data type to represent the properties of a type, such as: 

• Thickness 

• Density 

• Length 

• ... 

 Enumerated type definitions. 

 

 

2.4.3 Data Service (read-write/read-only modes) 

The Data Service stores the actual data entity instances relevant to projects. A project contains all data that 
pertains to a particular design project. 



                                                                                                                 

                                                                                                                                           

 

19 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

2.4.3.1 Storage 

The minimal functional level of the Data Service is to act as a directory or broker for data instances. In this 
mode, only a reference (e.g. URI/IRI) is kept as a reference to the actual data. In this mode, when an instance 
is created, the target URI is stored. On retrieval, the URL will be returned. 

Optionally, the Data Service may provide storage capabilities for the instance data. For this purpose, a specific 
data container format (e.g.  JSON, XML etc.) shall be used. In this mode, when an instance is created, its 
actual content is uploaded using such a data container. On retrieval, that data will be delivered in the same 
format as well. Note that this does not imply any kind of conversion to be provided. 

 

2.4.3.2 Version Management 

Data instances have a life-cycle. A specific instance is identified by a version (including a time stamp and 
origin). The combination of time stamp and origin is used as a unique version-based identification which 
ensures, that no duplicate version + origin combination can be created at any time. Instances may have 
multiple versions. Default retrieval shall always return the latest version. 

Instances may have a time-to-live (TTL) indication. This allows older versions to be purged. Purging is an 
optional operation, which may be provided by implementing services. Objects that have passed their time-to-
live indication will be subject to a garbage collection which may result in object deletion, once no live 
references exist. Client must accept that objects, whose TTL has expired may disappear. 

Instance versions may be marked as obsolete (“retired”) or erroneous. 

NOTE: there is no support for explicit deletion by clients to avoid various transaction and consistency issues 
and to support history tracking 

 

2.4.3.3 Data State 

Any data instance may have an associated data state.  

This shall allow applying standard stage tags to any instance. For example, a calculation result may be marked 
as estimated, approved etc. 

 

2.4.3.4 Data protection 

Several levels of information/data criticality must be supported. 

 

2.4.3.5 Organisation/Context 

The Data Service stores and delivers the actual data instances related to an organisation.  Additionally, 
common data may be required for general use, e.g. providing the context for a specific organisation. If 
requested, it returns the data entity to a client. A client must be able to add or update such data instance to 
the Data Service, if it is authorized. 

 



                                                                                                                 

                                                                                                                                           

 

20 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

2.4.3.6 Ship 

The Data Service must be able to store and deliver all data instances that are required to specify the ship and 
its parts. If requested, the Data Service returns the requested data entities to the requesting client. A client 
must be able to post such data instances to the Data Service, if it is authorized. The data instance of type 
“ship” shall have a link to the underlying data schema stored in Meta Service. 

 

2.4.3.7 Design Process 

The Data Service must be able to store all information relevant to describe the state of the design process 
corresponding to the Process Model. Authorized clients must be able to retrieve information and change the 
Design Process State via communication with the Data Service. 

 

2.4.3.8 Operations 

This sub-section covers the main operations that shall be provided by the Data Service. 

Create Instance 

The Data Service shall support the creation of a new instance of an entity type using the POST operation. 
Depending on the supported storage mode, either an URI or a data container (and optionally an URI) must 
be provided by the client. 

 

Search for Instance 

The Data Service shall allow the search for instances by search parameters such as name, id, property, 
extent, etc. Search parameters can be combined in any order and number. The Service should also allow 
search for Instance based on version and origin, using wildcards if necessary. 

 

List Extent 

The Data Service shall be able to list the extents of an object if queried. 

 

Assign Data State 

The Data Service shall be able to assign/update the data state to a selected data object instance. 

 

Inquire Data State 

The Data Service shall be able to inquire the data state of a selected data object. 

 



                                                                                                                 

                                                                                                                                           

 

21 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

2.4.3.9 (OPTIONAL: Referencing Data Type) 

All entities stored by the Data Service shall contain an optional property referencing the data entity type in the 
Ship Design Data Model (Data Schema). The decision whether the retrieved data entity has this property shall 
be made using a query parameter. 

 

2.4.4 Software Registry Service (read-write/read-only modes) 

2.4.4.1 Software component 

The software registry provides a central place to accept requests for registering or searching already 
registered software components. In detail, the software registry must provide the general functions mentioned 
below. 

Software characteristics 

The Software Registry must provide the functionality to characterize software. Characteristics are defined as: 

 Functional Categories: 

o Functional Scope (Keywords). 

o Activities covered. 

o Input Data. 

o Output Data. 

o (...) 

 Technical Properties: 

o Runtime requirements. 

o Licensing scheme. 

o Maturity (e.g. new development, prototype, partner’s background commercial software, third 
party commercial and third party open source). 

o An indication of time. 

o (...) 

  Performance classification. 

The Software Registry should provide a mechanism to estimate the expected time needed to process the 
specified task. Ideas for that kind of mechanism are: 

 Range (longest time ever measured and shortest time ever measured). 

 Correlation with one driving parameter (e.g. elements in FE-calculation). 

 

2.4.4.2 Register Software components  

The software registry must be able to process requests for registering new software components. This request 
must at least contain: 



                                                                                                                 

                                                                                                                                           

 

22 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

 The name of the software component. 

 A description. 

 The functional scope (keywords). 

 Supported tasks (activities and the data flows within the ISO 10303-based SHIPLYS Activity Model). 

 Its runtime instances, whereas a specific ID is generated internally. 

The runtime instances contain the information regarding the status, which can be activated or deactivated, a 
link to the related job service as well as information regarding the license type and platform. 

In addition, further properties regarding the meta information of the new software to be registered can be 
determined.  

These properties comprise information about  

 Version.  

 Originator.  

 Distribution. 

 Functional description. 

 Information references. 

 License type. 

 Applicable fees. 

 Platforms. 

 Interfaces. 

 Programming language and documentation. 

 (...) 

 

The software Registry must respond to the request by registering the software component. 

After the registration, the software properties shall be subject to search requests and shall be returned by the 
software registry when it fits to the search parameters. Authorisation must be appropriate to carry out any 
such searches. 

A software registration may also be updated, e.g. by registering additional runtime instances, adding 
additional/remove obsolete supported tasks etc. Furthermore, the status of a runtime instance can be changed 
or a runtime instance can be completely removed, whereas in both cases the request is rejected, if the runtime 
instance is currently processing a job. 

2.4.4.3 Search for software components 

The software registry must support searches for registered components using one or more different search 
criteria. For example: 

 It shall return a list with all registered tools that allow calculation of some data collection/data flow 



                                                                                                                 

                                                                                                                                           

 

23 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

 Return information about specific software 

 Complex queries (data certainty, underlying method…) 

 Some tolerance in spelling of software names and functional criteria.  

2.4.4.4 Relation to the job service 

The relation between the software registry and the job service is provided by an URL property within each of 
the specific software runtime instances. This URL points to the job service responsible for the execution of 
the selected software runtime instance, whereas a job service may manage several software runtime 
instances. 

2.4.4.5 Activate/Deactivate registered software 

The Software Registry must provide the functionality to activate or deactivate registered software since it 
might be decided that this software should not be used temporarily or indefinitely. The software information 
nevertheless must be maintained in order to be able to identify software components that have been used 
previously to produce data. A software can be assumed to be deactivated if it has no runtime instances at all 
or all its runtime instances have been deactivated. 

2.4.5 Job Service 

The Job service is provided to support interaction with SHIPLYS end-points supporting the execution and 
monitoring of registered software. As part of the software registration, access details to the responsible Job 
service must be provided. Details about the used version of data shall be stored. 

It must be possible to start a software component via a common mechanism that hides the details of the actual 
integration mechanism applied as well as the technical details on how to run the software. It shall also check 
the availability of a software component in terms of license status and system availability or load. 

As part of the start request, references to the related input data shall be accepted and consumed. 

Note that running applications will always be asynchronous. Once a job is started, the client shall be provided 
with some sort of “job handle” which enables the calling client side to communicate directly with the executing 
end-point running the software. 

 

2.4.5.1 Job Service End point 

Each real or virtual system providing a service to access and execute registered software represents a Job 
Service End Point, which must be accessible via a unique URI. 

Any such end point may support one or more different types of registered software with a corresponding 
executing profile (capacity in terms of available concurrent instances and support hardware capacity). 

 

2.4.5.2 Software Runtime Instance 

Any executing software job will be realised using a runtime instance of a specific software component on the 
target end point. Thus, every job executed by a specific job service will be associated with a specific software 
instance.   

 



                                                                                                                 

                                                                                                                                           

 

24 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

2.4.5.3 Job 

Each job will have a unique set of characteristics including a globally unique ID, software instance, runtime 
settings, input parameters, expected output parameters, whether the job is interactive, embedded, if it requires 
queueing etc. 

2.4.5.4 Job Creation 

Creates a new job of a specified software component. Provides a “handle” (i.e. a URL) suitable for future 
reference to the job. Furthermore, information regarding the status, start and end date is considered. 

2.4.5.5 Job Cancellation 

Informs the Job service about the request to cancel an executing job. 

2.4.5.6 Job Status 

Retrieves information about a job status, whether running, paused, completed, aborted, restarted, cancelled 
or obsolete. If results are available, the appropriate references to the stored data shall be available. We will 
consider maintaining a log of completed jobs. 

Jobs having the status obsolete could be deleted automatically after their results have been stored. 

 

2.5 Use Cases 

NOTE 1: in the URL/URI/IRI examples ~ replaces the URL prefix such as https://<some-host>/v1/ 

NOTE 2: the API version is reflected by a version path element such as v1, v2, … 

NOTE 3: some sample URL may contain special characters that need to be mapped in valid URLs. For 
readability, this has not been applied. 

NOTE 4: request and response content is not shown in a technically and syntactically precise notation in this 
section, but only for the purpose of illustration.  

 

2.5.1 Meta Data Service Use cases 

2.5.1.1 Retrieve general schema information 

The client retrieves the general information regarding the used schema with respect to the current project. 

Example of the request (assuming that a schema called SHIPLYS-SCHEMA exists): 

~/meta/dataSchema/SHIPLYS-SCHEMA 

Response: 

Name: SHIPLYS-SCHEMA 

Description: Schema to describe life-cycle relevant data during the early ship design  

Revision: 1234 

Copyright: Copyright © 2019, The SHIPLYS Consortium 

 



                                                                                                                 

                                                                                                                                           

 

25 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

2.5.1.2 List entity types 

The client retrieves all entity types provided by the SHIPLYS framework sorted alphabetically. In this way, it 
is possible to get an overview which entity types do already exist and can be used. Furthermore, schema 
versioning can be considered. 

Example of the request: 

~/meta/dataSchema/{schemaID}/v1/types/ 

Response: 

assembly_node, block, compartment, design_loading_condition, pipe, plate, 
process_template, zone, … 

 

2.5.1.3 Lookup entity type by name / Retrieve entity details (e.g. inheritance) 

The client retrieves a particular entity type in order to obtain detailed information. 

Example of the request: 

~/meta/dataSchema/SHIPLYS-SCHEMA/types/compartment 

 

Response: 

id: SHIPLYS-AAM-compartment 

href: “...” 

name:  

version: 

properties:[ 

{ 

"name": "parameter1", 

"href": "..." , 

"objectInstance": "..."   

}, 

{ 

"id": "parameter2", 

"href": "..." , 

"objectInstance": "..."  

} 

] 

timestamp: 2017-05-17T14:30+02:00[Europe/Paris] 

 



                                                                                                                 

                                                                                                                                           

 

26 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

Copyright: Copyright © 2019, The SHIPLYS Consortium 

 

2.5.1.4 Retrieve entity type properties 

The client retrieves the supported properties of a particular entity type. 

Example of the request: 

~/schema/SHIPLYS-DESIGN/types/compartment/properties 

Response: 

boundary, cargo_positions, center_of_volume, coating, noise_classification, tightness... 

 

2.5.1.5 Lookup property by name / Retrieve property details 

The client retrieves the details of a particular property. 

Example of the request: 

~/schema/SHIPLYS-DESIGN/types/compartment/properties/tightness 

Response: 

Id: tightness 

Description: ... 

Type: { 

id: tightness_type 

href: … 

values: [air_tight, fume_tight, gas_tight, non_tight, oil_tight, water_tight, 
weather_tight 

]  

} 

 

2.5.1.6 Retrieve general process model information 

The client retrieves the general information about the process model with respect to the current project. 

Example of the request: 

~/meta/processModels/SHIPLYS-AAM 

Response: 

Name: SHIPLYS-AAAM 

Description: The Activity Model used in SHIPLYS 

Revision: 1234 

Copyright: Copyright © 2019, The SHIPLYS Consortium 



                                                                                                                 

                                                                                                                                           

 

27 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

2.5.1.7 Inquire the list of all parameters in the process model 

The client sends a request to retrieve a list of all parameters in the selected process model. 

Example of the request: 

~/meta/processModels/SHIPLYS-AAM/parameters 

Response: 

id: SHIPLYS-AAM-parameters 

limit: 10 

offset: 0 

total: 25 

href: “...” 

items:[ 

{ 

"name": "parameter1", 

"href": "..." , 

"objectInstance": "..."   

}, 

{ 

"id": "parameter2", 

"href": "..." , 

"objectInstance": "..."  

} 

] 

timestamp: 2017-05-17T14:30+02:00[Europe/Paris] 

Copyright: Copyright © 2019, The SHIPLYS Consortium 

 

2.5.1.8 Inquire the list of all outputs of one specific activity 

The client sends a request to retrieve a list of all outputs of one activity. 

Example of the request: 

~/meta/processModels/SHIPLYS-AAM/activities/A122/outputs 

Response: 

id: A122-outputs 

limit: 10 

offset: 0 



                                                                                                                 

                                                                                                                                           

 

28 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

total: 25 

href: “..” 

items:[ 

{ 

"name": "output1", 

"href": "..." , 

"objectInstance": "..."   

}, 

{ 

"id": "output2", 

"href": "..." , 

"objectInstance": "..."  

} 

] 

timestamp: 2017-05-17T14:30+02:00[Europe/Paris] 

Copyright: Copyright © 2019, The SHIPLYS Consortium 

 

2.5.2 Data Service Use Cases 

2.5.2.1 Lookup ship/project by name 

A user wants to retrieve information about a specific project/ship. He/she sends a request and the Data 
Service answers with the data element of type e.g. “ship” (or “project”). 

Example of the request: 

~/data/exampleOrganisation/name=ship_xyz 

Response: 

<URL to ship> 

 

2.5.2.2 Retrieve extent of a type 

A user wants to get the extent (the complete set of instances of a type) of a specific entity (such as ship, 
compartment, loading condition, etc.) and sends a corresponding request. The Data Service responds with 
the set of instances of that type that contained the project. E.g., if entity is of type ship, then the result would 
be a set containing only a single instance: the ship. If the entity type is compartment, then the result would be 
the set of compartments defined for the ship.  



                                                                                                                 

                                                                                                                                           

 

29 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

Example of the request: 

~/data/exampleOrganisation/ships/ship_xyz/xtents/plate 

Response: 

A set of <URL>s to all plates 

 

2.5.2.3 Lookup / Find / Query single entity or entities 

A software client system wants to retrieve the compartment(s) that exists between given x,y,z coordinates. It 
sends a query of type “return all compartments with extents between...” 

Example of the request: 

~/data/exampleOrganisation/ships/ship_xyz/xtents/compartment?lb=(10.0m,20m,0)&ub=(16.5m
,0m,2525mm)&mode=intersect 

Response: 

A set of <URL>s to all compartments intersecting with the given volume 

 

A user wants to retrieve all plates that extend from .. to .. and have an actual thickness below a limit value. A 
corresponding request to the Data Service delivers a set of plates that match the criteria. The value returned 
will be in relevant standardised units for the material in question. 

Example of the request: 

~/data/exampleOrganisation/ships/ship_xyz/xtents/plate?ub…?lb…&thickness=<7mm 

Response: 

A set of <URL>s to all plates 

 

2.5.2.4 Retrieve instance data 

The user is in possession of an entity and wants to get its actual data. He/she sends a request of type “Get 
data of instance” and the Project Data Service delivers the data of the specified entity. 

Example of the request: 

~/data/exampleOrganisation/ships/ship_xyz/xtents/plate/A100-23028-1P/v/2016-10-
20T151000/ 

Response: 

A JSON data set with all data details of the instance 

 

2.5.2.5 Store new entity instance or new version of an instance 

A retrofit project requires the storage of a new scrubber. A request is sent and processed by the Data Service 
creating a new scrubber object. 



                                                                                                                 

                                                                                                                                           

 

30 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

Example of the request: 

~/data/exampleOrganisation/ships/ship_xyz/xtents/product_component/MainEngine—SC-
4/?....<data details> 

Response: 

The <URL> to the newly created instance 

NOTE: POST method allows a complete JSON data package to be uploaded. 

 

For a new version of an instance, the request is shown below. 

Example of the request: 

~/data/exampleOrganisation/ships/ship_xyz/xtents/product_component/MainEngine—SC-
4/v/?....<data details> 

Response: 

The <URL> to the newly created instance version 

Note: POST method allows a complete JSON data package to be uploaded. 

2.5.2.6 Assign/Update entity instance state 

Within an iteration loop, the dimensions of a profile have been confirmed. The user/client/software sends a 
request to change the status from estimated to calculated or approved. The Data Service updates the data 
state. 

Example of the request: 

~/data/exampleOrganisation/ships/ship_xyz/xtents/profile/A100-23028-S12/v/2016-10-
20T151000/?state=calculated 

Response: 

The updated state information for the target profile 

 

2.5.3 Software Registry Service Use cases 

2.5.3.1 Register new software   

A user discovers a new software component which he/she wants to register. As a consequence, a registering 
request is sent to the software registry. The request must contain at least the name, the functional profile of 
the new component and the appropriate runtime instances containing a reference to a specific job service 
they are implemented by. After the registration, the software must be available within the framework context. 
This function will be subject to various authorisation checks. Note that most likely not every user will be allowed 
to perform this function. 

It may also be considered to make this a two-stage process, requiring some kind of approval e.g. by a project 
or system manager. 

Example of a POST request: 

~/swreg/software 



                                                                                                                 

                                                                                                                                           

 

31 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

Part of the request Content: 

name: Ultimate Ship Designer 

supportedTasks: A122-Create preliminary design, A1221-Create preliminary hull form 

runtimeInstances: 

runtimeInstance: 

jobService: ~/jobs 

statusActive: true 

licenseType: Standalone 

applicableFees: 2000 € 

supportedPlatform: Windows 10 

version: 1.6 

functionalScope: [] 

etc. 

 

Part of the response Content: 

Software successfully added 

id: softwareId 

href: ~/swreg/software/softwareId 

2.5.3.2 Search for software based on functional characteristics 

Example: A preliminary hull form has been designed. A probabilistic damage stability calculation should be 
executed. Only software should be selected that is expected to be able to return the result within a specified 
period of time. The user sends a request with corresponding criteria and the Software Registry answers with 
a (possibly empty) list of tools that fulfil the specified requirements. 

Apart from tasks to be supported, the following request contains a limit of 10 for number of returned results. 
A default offset of 0 is implied within this request. Furthermore, the query parameter condition “statusActive” 
is used in order the get results containing only activated software which can be used immediately. It is also 
possible to get more information at once without using the returned link but by the use of a further query 
parameter “expand”. 

Example of a GET request: 

~/swreg/software?limit=10&tasks=damage stability&calculation time<5h&statusActive=true 

Part of the response Content: 

id: softwareId 

href: ~/swreg/software/softwareId 

2.5.3.3 Search for software based on name 

A user looks for a specific tool with a known name and wants to acquire information about this tool. The 
Software Registry responds to the search request by returning the selected tool reference and information. 



                                                                                                                 

                                                                                                                                           

 

32 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

As mentioned above, in order to receive more information at once it is possible to use the expand query 
parameter as shown in the following example. 

Example of a GET request: 

~/swreg/software?expand&limit=10&name=Ultimate Ship Designer&statusActive=true 

Part of the response Content: 

id: softwareId 

href: ~/swreg/software/softwareId 

name: Ultimate Ship Designer 

supportedTasks: A122-Create preliminary design, A1221-Create preliminary hull form 

runtimeInstances: 

id: instanceId 

href: ~/swreg/software/softwareId/instances/instanceId 

version: 1.6 

functionalScope: [...] 

platforms: Windows 10, Linux 

 

2.5.3.4 Software usage negotiation 

The software registry has to be able to perform the software usage negotiation with the user. This means it 
has to provide the user with a fitting software list and react to the user’s selection by activating the selected 
software. 

2.5.3.5 Activate & Run Software component 

After the selection of the software, the software registry shall provide the appropriate means to run the 
selected software. This requires the necessary authorisation for accessing the input data, executing the 
software as well as archiving of the results. 

The following example shows how to change the software status which depends on the status of its runtime 
instances. 

Example of a POST request: 

~/swreg/software/{softwareId}/instances/{instanceId} 

Request Content: 

jobService: ~/jobs 

statusActive: true 

licenseType: Standalone 

applicableFees: 2000 € 

platform: Windows 10 

 



                                                                                                                 

                                                                                                                                           

 

33 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

Response Content: 

Runtime instance successfully updated 

2.5.4 Job Service Use cases 

2.5.4.1 Create a job 

Each of the jobs is related to a specific software runtime instance, whereas several jobs may be assigned to 
one runtime instance. For that reason, in order to create a new job, a software runtime instance has to be 
provided. 

Example of a POST request: 

~/jobsvc/instances/{instanceID}/jobs 

Part of the request Content: 

start: 2017-01-01 15:45:00 

end: not available yet 

 

Part of the response Content: 

Job successfully created 

status: created 

id: jobId 

href: ~/jobsvc/instances/{instanceID}/jobs/{jobId} 

 

2.5.4.2 Retrieve jobs by a software runtime instance 

By requesting a software runtime instance a link to the related jobs is provided shown within the following 
example, which connects the software registry service with the job service. 

Example of a GET request: 

~/jobsvc/instances/{instanceID}/jobs?expand&limit=10 

alternative request via query parameter: 

~/jobsvc/jobs/?instance={instanceID}&expand&limit=10 

 

Part of the response Content: 

id: jobId 

href: ~/jobsvc/instances/{instanceID}/jobs/{jobId} 

status: running 

softwareRuntimeInstanceId: 1 

start: 2017-01-01 15:45:00 

end: not available yet 



                                                                                                                 

                                                                                                                                           

 

34 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

2.5.4.3 Status change of a job 

The status of a job can be running, paused, completed, aborted, restarted, cancelled and obsolete. The 
following example shows an update of a job after its completion. 

Example of a POST request: 

~/jobsvc/jobs/{jobId} 

Request Content: 

status: completed 

softwareRuntimeInstanceId: 1 

start: 2017-01-01 15:45:00 

end: 2017-01-01 17:00:00 

 

Response Content: 

Job successfully updated 

 

2.6 Simple Integration Example 

2.6.1 Introduction 

This section illustrates an example of the integration of two software tools: the RSET early stage design tool 
and a simple LCC spreadsheet tool. The integration method used in this example might be adapted to the 
other design and life-cycle analysis tools, so that it might serve as a basic prototype for integration. 

2.6.2 Approaches to Integration 

As indicated in section 2.1.1.4, integration may be approached in several ways. The case of two software 
tools is considered here, but the techniques used could potentially be extended to allow a greater number of 
tools to exchange data and operate in conjunction with each other. 

A given pair of software tools may either interface with each other directly (where they have been designed 
to do this, or where plug-in code can facilitate this functionality), or indirectly via some other means (e.g. glue 
code). The best option out of these alternatives will vary, depending on the type and functionality of the tools, 
the amount of data to be exchanged, etc. For instance, where two tools must be repeatedly executed many 
times in quick succession, a direct interface may be the best approach, after which the final results are 
returned to the SHIPLYS platform. In other cases, it may be favourable for the platform to act as an 
intermediary between the tools (for example, to ensure data consistency or to perform some error-checking 
function during exchange of data). 

2.6.3 Selection of an approach 

There are a number of key considerations when determining the best approach for integrating any two 
software tools. Firstly, the prime objective must be defined; 

 Are the two software tools performing some kind of optimisation? 



                                                                                                                 

                                                                                                                                           

 

35 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

 Is some iterative procedure required to produce an outcome compatible with user specified constraints 
(e.g. keeping a component of cost within a specified budget)? 

 Are the tools designed in such a way that a particular method for integration is simpler to implement? 

Answers to these questions will help determine whether the REST interface or some other simple method for 
software integration is the preferred approach. 

The example case described here illustrates integration of two tools via the SHIPLYS platform. 

2.6.4 General Workflow 

The following example workflow shows the steps involved in transferring data from one tool to the other via 
the SHIPLYS platform. 

1. User activates tool A via the platform 
a. Required data is loaded from the platform into tool A 

2. User completes required tasks in tool A 
3. User saves/exports results of tool A 
4. Platform captures results 
5. Tool B is activated (via user action or automatically by platform) 

a. Results from tool A (and other required data) are loaded via platform into tool B 
6. User completes required tasks in tool B 

2.6.5 Benefits of this integration method 

The platform handles all data and can therefore: 

 Check for completeness 

 Check for consistency with existing ship model data generated from previous tools 

 Merge output data from one tool with data from other sources to be fed to the next tool in the workflow 

2.6.6 Brief description of RSET 

The Rapid Ship Evolution Tool (RSET) is an early stage design tool for determining compartment arrangement 
within a given hull form and superstructure space, subject to user-specified constraints and preferences for 
compartment placement. It will serve here as a simple example of an early stage design tool to be integrated 
with a cost estimation tool. 

The tool requires as input a vessel hull form (in Wavefront .obj file format), but may also be supplied with 
some set of the following inputs: 

 A list of compartments to be arranged (.csv). 

 A list of bulkhead positions (.csv). 

 A list of deck positions (.csv). 

 A definition of the superstructure decks (.csv). 

 A list of compartment arrangement constraints (.csv). 

2.6.7 Brief description of LCC tool 

The LCC tool consists of a set of statistical relationships based on historical cost data which relate the input 
parameters (vessel dimensions, total volume of compartments within each WBS element, etc.) to various cost 
components of the LCC. 

The LCC tool will take as input the following: 



                                                                                                                 

                                                                                                                                           

 

36 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

 The output vessel design produced by the RSET tool, including: 

 Vessel dimensions. 

 Hull form. 

 Compartment details (type, size). 

These parameters will serve as input data to predict construction costs based on a parametric cost estimate. 
If appropriate cost data is available, maintenance, operation and decommissioning costs might also be 
included in order to produce a total life cycle cost estimate. Otherwise, the tool may simply estimate 
construction cost, which can be fed back to the SHIPLYS platform and combined with estimates from other 
tools to create a life cycle cost estimate. 

2.6.8 Integration example 

Following the general workflow given in section 2.6.4, integration of RSET and the LCC tool may be achieved 
in the following manner: 

1. User activates tool A; required data loaded from platform into tool A 

In general, the means by which the input data is provided to the tool will vary: 

 Launch command opens an appropriately formatted file with the tool. 

 Launch command runs the tool and then activates a data import function within the tool. 

This step may require some user interaction – for example, the user may need to specify what data should be 
provided to the tool. 

In the current version of RSET, the user must interact with the tool through the GUI interface to specify the 
inputs not already supplied as input files and run the compartment arrangement solver. 

2. User completes tasks in tool A 

Some tools may not require user interaction to perform their function, but in most cases, some degree of user 
supervision (at minimum) or input will be required. 

Specification of compartment arrangement constraints and preferences might be provided via input files in 
future revisions of RSET, but currently is performed by the user within the program interface. 

3. User saves/exports results of tool A 

If the tool requires user interaction, the user may need to export the results from the tool. If user interaction is 
not required, output/export of the results could be automated, and this step skipped. 

Once an arrangement is generated in RSET, the user may export attributes of this arrangement to an output 
file (.csv containing vessel dimensions, positions of compartments, etc.). 

4. Platform captures results 

Once the output of tool A is finalised, the SHIPLYS platform should capture the results. Depending on the tool 
used, this might be achieved in one of the following ways: 

- Data is transferred directly from the tool to the platform via data stream 

- Data is imported into the platform from an exported file 

In this example case, the SHIPLYS platform could simply read the data from the file exported in the previous 
step. 



                                                                                                                 

                                                                                                                                           

 

37 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

5. Tool B is activated - Results (and other required data) are loaded from tool A, via platform, into tool 
B 

This step is essentially the same as step 1, but the tool may be activated automatically, depending on the 
functionality required. For example, a pair of tools may be alternately executed repeatedly to perform some 
goal-seeking or optimisation function. In that case, the user would specify a goal, constraints and termination 
conditions and then activate the process, which should then proceed without user intervention until the 
termination conditions have been reached. 

If user interaction is required, the process continues in the manner described in steps 2, 3 and 4. 

In this example case, the LCC tool has only simple data import/export functionality via reading/writing csv 
files, but as it is based on an Excel spreadsheet it may be readily modified (using custom VBA code) to 
interface with the SHIPLYS platform and/or RSET in a more direct manner. 

Using the import/export functionality only, the SHIPLYS platform can activate the LCC tool and specify the 
location of a csv file for import. On launching the tool, the file is imported automatically based on functionality 
built into the tool, at which point the tool will proceed automatically to generate a cost estimate (based on the 
ship design parameters provided in the imported file), export this result to a csv file, then terminate. On 
receiving a signal from the tool indicating that it has terminated successfully, the SHIPLYS platform will then 
import the cost estimate from the csv file. 

 

2.7 SHIPLYS Integration Suite mock-up 

The figures below show a few sample screenshots of the mock-up SHIPLYS platform user interface. The 
screens show a few steps at different stages through the process of defining the early stage vessel design, 
through to some of the later stage steps including cost estimation and production planning. 

It should be noted that at the time of writing, the particular software tools to be used for each activity in the 
workflow have not been finalised – those tools shown in the mock-up are examples only. 

2.7.1 User interface overview 

The overall workflow is divided into modules, with sub-functions within each module; these are predominantly 
based on the first and second level activities of the SHIPLYS Activity Model. 

The modules are accessed by activating the buttons on the left hand side of the interface. Initially, only some 
of the modules are accessible to the user. Other modules become enabled as the design progresses and the 
required data and inputs for those modules are defined. Different functions within each module are contained 
in tabs (selected at the top of the screen). 

 



                                                                                                                 

                                                                                                                                           

 

38 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

 

Figure 8: Mock SHIPLYS Integration Suite Interface 

 

Information on the user’s progress through the workflow and the completeness of the design is indicated in 
the right-hand pane: the top portion contains an expandable tree of all elements in the ship model and 
indicates their status and current values, while the lower portion prompts the user on which steps in the 
workflow they should ideally perform next and provides links to the relevant tabs. An interactive graph showing 
progress through the workflow and the status of the various steps is shown in the lower portion of the pane. 
Both sections employ red-amber-green visual indicators to indicate the status of an element. 

The middle pane shows information (top) and user actions (bottom) relating to the currently selected tab (i.e. 
a sub-function within a module). The format of these will differ between different sub-functions and modules, 
depending on what information needs to be displayed and what actions the user needs to perform. 

 



                                                                                                                 

                                                                                                                                           

 

39 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

 

Figure 9: Start-up screen with prompt for initial settings (from IST spreadsheet tool) 

 

On starting up a new project in the interface, the user is presented with a start-up screen as shown in Figure 
9 above, prompting them to specify initial basic information about the vessel design. The settings screen is 
taken from a spreadsheet tool constructed by IST which may form part of the SHIPLYS tool chain. 



                                                                                                                 

                                                                                                                                           

 

40 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

 

Figure 10: Hull form definition tab of the hull module 

 

Prompts appear in the bottom-right pane of the interface, indicating to the user the next logical steps in the 
workflow and linking to the relevant modules. The user proceeds by selecting links in the prompt pane or by 
selecting a module and sub-function manually using the buttons and tabs. The user has ultimate control over 
the sequence of steps in the workflow – the prompts only serve as guidance and may be disregarded if the 
user prefers or requires a different approach. 

After providing estimates of the initial ship and hull parameters (either manually or using the IST spreadsheet 
tool), the next step is to create the hull form (using CAFE [4]). 



                                                                                                                 

                                                                                                                                           

 

41 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

 

Figure 11: General arrangement module 

 

Once the hull form has been created (or imported from another tool) and the required compartments have 
been determined, the general arrangement can be determined. At this stage, the user can also perform 
stability and structure related analysis in the appropriate modules. 



                                                                                                                 

                                                                                                                                           

 

42 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

 

Figure 12: Structural analysis module 

 

LR RulesCalc [5] might be used in conjunction with CAFE for most functions within the structural analysis 
module. As more of the model is defined, new modules become accessible to the user (i.e. the module buttons 
on the left become enabled). 



                                                                                                                 

                                                                                                                                           

 

43 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

 

Figure 13: Production analysis module 

 

Once the ship design has been defined to a sufficient degree, the user can start using the modules relating to 
LCC, Risk, and Environmental Analysis and Production Simulation. The mock interface shows the AES 
Shipyard Production Simulation software [6] for this function (shown in Figure 13 above) and the IST 
spreadsheet tool for estimating LCC (Figure 14). 



                                                                                                                 

                                                                                                                                           

 

44 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

 

Figure 14: Life Cycle Cost module 

 



                                                                                                                 

                                                                                                                                           

 

45 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

3 SHIPLYS Scenario Requirements for integration of rapid virtual 
prototyping and life cycle tools. 

 

The Consortium have developed a spread sheet based matrix in order to consider tools and components to 
be integrated the SHIPLYS platform. The matrix shown in figure 15 is envisaged to be a live document to be 
updated when required together with the Software Integration Register described in section 4.  

 

Figure 15: The SHIPLYS Master Matrix to consider potential Applications to be integrated on 
the SHIPLYS platform 



                                                                                                                 

                                                                                                                                           

 

46 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

The sub-sections below summarise the three Scenarios that are being used in the development of SHIPLYS 
functionalities. 

 

3.1 Scenario 1: Optimised design of a novel hybrid propulsion system in a 
short-route ferry 

This Scenario is aimed at developing software capability to optimize a novel hybrid propulsion system used 
in a short-route ferry.  

The hybrid propulsion system being considered combines internal combustion engines and battery cells. 
The optimization here is to determine the most suitable combination of propulsion (i.e. the proportion of 
propulsion directly from combustion and that from battery), using a life cycle approach covering LCC, risk 
assessments and environmental impacts.  

The approach will cover operation and maintenance, scrapping and recycling stages. Potentially, the 

implications of optimizing the propulsion system on the design and production of the short route ferry will 

also be considered using the generic functionality of the suite of software created. 

More information on the Scenario is available from [7].   

3.1 Scenario 2: Development of conceptual ship design with inputs from Risk-
based Life Cycle Assessments 

This Scenario is aimed at developing software capability to generate conceptual ship design with inputs 
from risk based life cycle assessments.  The scenario is organized in three consecutive tasks and two 
parallel tasks: Task 1 on conceptual ship design, Task 2 on risk-based structural assessment and Task 3 on 
risk-based maintenance. Task 4 is focused on fast hull geometry prototyping and Task 5 is related to 
production assessment. Tasks 4 and 5 will be carried out in parallel with Task 1. 

More information on this Scenario is available from [8]. 

 

3.2 Scenario 3: Development of software to support early planning and costing 
of ship retrofitting accounting for life cycle costs and risk assessments  

This Scenario is aimed at developing software to support early (bid-stage) planning and costing of ship 
retrofitting, taking account of LCC and risk management of processes involved. Risk management in the 
context of this Scenario includes hazard management and project management risks such as scheduling 
conflicts and the impact of delays. The ship retrofit process is a reengineering process of the vessel which in 
many cases can involve fundamental changes in the architecture, functionality or operation of the vessel, 
but the nature of repair and retrofitting projects differs substantially from long term new building projects. 

More information on this Scenario is available from [9]. 

   



                                                                                                                 

                                                                                                                                           

 

47 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

4 Software Integration Register   

SHIPLYS will maintain a formal register of the software items that we will integrate into the SHIPLYS overall 
toolset. This will be a subset of the software register developed elsewhere but with added detail about the 
entries that is necessary for integration and subsequent possible commercial use. The register will be updated 
throughout the project lifetime. 

 

1. Name of software. 

2. Category of software (e.g. RVP, LCCA, workflow planner, data repository, regulatory resource, other 
early stage model). 

3. Software status characterisation (new development, prototype, partner’s background commercial 
software, 3rd party open source, 3rd party commercial). 

4. SHIPLYS model function the software supports. 

5. Integration approach needed (Glue code, DAI, API, batch file, etc.). 

6. Execution style (synchronous or asynchronous), does it support full automation? 

7. Information security classification. 

8. Need for SLA (including cost and service level, foreground generation, considerations, etc.). 

9. Technical condition assessment, to guide duration and effort of integration activity and including 
aspects like: compliance with standards, security mechanisms, performance, scalability and 
availability. Will the s/w/ impose constraints on the execution characteristics of a larger system or 
not? (bottleneck, data volumes etc.). Parts of this assessment will necessarily be subjective. 

10. Future business value assessment, what measurable benefits might this provide to SHIPLYS. 

11. Which scenario, if any, does the tool support? 

12. What data sources (manual entry, other s/w, h/w) and formats does the s/w support? 

13. What output formats does the s/w generate? 

14. What is the nature of the HCI and learning curve needed for this tool? (i.e. is it a spreadsheet with 
no HCI or embedded help or is it a fully supported s/w suite with advanced GUI etc.?) 

15. Updates - when selecting a candidate for integration, we must also be mindful of version control for 
the component and any formal mechanism it uses for updating itself (which could easily break an 
integrated tool) 



                                                                                                                 

                                                                                                                                           

 

48 

SHIPLYS – Grant Agreement number: 690770  

GA Ref: Ares (2016) 2353538  

 

5 Conclusions 

In its first year, SHIPLYS has settled on an integrative approach for coupling ad-hoc software components 
and that is described in this deliverable. A variety of ways in which software (of all standards and maturity) 
can be made to interact is captured by this approach. By considering both the design goals and what the 
associated data model must be, we outlined both a schema for interaction and a set of services that control 
data flow itself. Where interactivity is desired between commercial tools and SHIPLYS then we are confident 
that as long as the prior tool can be made to output content then we can capture that and re-use as necessary. 

As part of introductory work that will lead into later work packages, we have also generated a tentative design 
for the main HCI of the SHIPLYS solution. It is hoped to be intuitive and effective and familiar, being based 
on the sequential actions found in the relevant ISO standards. 

 

6 References 

 

[1] Fielding, R. T. (2000) www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation_2up.pdf 

[2] Fielding, R. T. (2008) - http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven 

[3] Hardt, D. (2010) https://tools.ietf.org/html/  

[4] BVB Ltd, as2con-Alveus Ltd (2017) http://www.bvbcafe.com 

[5] Lloyd’s Register (2014) http://www.lr.org/en/services/software/rulescalc.aspx 

[6] Atlantec Enterprise Solutions GmbH (2017) http://www.atlantec-es.com/shipyard-production-
simulation.html 

[7] Wang H, Oguz E, Jeong B, Zhou P. Optimisation of Operational Modes of Short-Route Hybrid Ferry: A 
Life Cycle Assessment Case Study.  International Maritime Association of the Mediterranean (IMAM) 
Conference; Lisbon, Portugal 2017. 

[8] Garbatov Y, Ventura C, Guedes Soares P, Georgiev T, Koch T, Atanasova I. Framework for conceptual 
ship design accounting for risk-based life cycle assessment (under review for publication).  IMAM 2017 
(International Maritime Association of the Mediterrean); Lisbon, Portugal 2017. 

[9] Porras A, Herrera L, Carneros A, Zanon JI. LifeCycle and virtual prototyping requirements for ship Repair 
Projects (under review for publication).  IMAM 2017 (International Maritime Association of the 
Meditteranean); Lisbon, Portugal 2017. 

 

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

