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1 INTRODUCTION 

Steel stiffened plates are predominantly used in ship 
structural design. The recent development in structural 
reliability methods and optimisation tools permits a 
coupled reliability based design approach to be 
employed in which the uncertainties related to the 
design variables can be directly accounted for.  

The reliability analysis explored here is using the 
first order reliability methods, FORM that provide a 
way of evaluating the reliability efficiently with a 
reasonably good accuracy, which is adequate for 
practical applications as provided by Rackwitz and 
Fiessler (1978) and Ditlevsen (1979). 

Predominantly FORM approaches have been used 
for a structural assessment as shown by Garbatov and 
Guedes Soares (2008, 2011), but may also be employed 
for a probabilistic analysis of the survival index after 
ship flooding. as demonstrated by Georgiev and 
Naydenov (2015).  

A genetic algorithm with a termination criteria is 
employed here (Deb et al., 2002, Wong et al., 2015) for 
a non-linear optimization problem in defining the best 
design solutions of the stiffened plate subjected to 
compressive loads. The genetic algorithm of (Deb et al., 
2002) accommodates fast non-dominated sorting 
procedure, implementing an elitism for the multi-
objective search, using an elitism preserving advanced 
approach allowing both continuous and discrete design 
variables. 

Pareto frontier (Komuro et al., 2006) is applied for a 
simultaneous minimization of the net sectional area and 
structural displacement.  

Employing the Pareto Frontier, an optimal solution 

accounting for the existing constraints may be chosen 
using a utility function to rank the different designs, or  
by using 2D or 3D scatter diagrams to identify the more 
attractive ones. In the present case study, an additional 
constraint is introduced representing the target reliability 

level to choose the most appropriate design solution. 
A three-step approach for design of stiffened plate is 

presented that couples the reliability methods and 
structural optimization techniques. Once the structural 
topology is defined, the scantling of the structural 
components of the stiffened plate is performed and 
optimized, in which the design variables, objective 
functions related to the minimum net sectional area, 
which leads to a minimum weight and minimum 
displacement and constraints, including the ultimate 
compressive strength are defined in a purely 
deterministic manner. Then the Pareto frontier is used 
to define the most suitable design solutions in 
minimizing both objective functions, satisfying all 
constraints. The design solutions at the Pareto frontier 
is then used as a basis for the reliability-based 
optimization regarding the target reliability level that is 
required to guarantee the structural integrity in which 
the limit state function is composed by the selected 
stochastically described design variables. This step 
accommodates the uncertainties related to the design 
variables and involved computational models. 

The objective here is to perform a multi objective, 
nonlinear structural optimization of a stiffened plate 
subjected to combined stochastic compressive loads 
accounting for the ultimate strength and reliability 
based constraints in the design. The Pareto frontier, 
ultimate limit state and target reliability, defined as 
additional constraints are employed to identify the 
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optimal design solution. Sensitivity of the design and 
random parameters are analysed and the partial safety 
factor that can be used in an early stage of design are 
defined. 

2 STRENGHT ASSESSMENT 

2.1 Structural description 

Longitudinal stiffened plate of an angular profile is used 
to build a bottom structure of a tanker ship is analysed 
in the present study (see Figure 1). The principal 
dimensions of the tanker are: the length between the 
perpendiculars, L=139.5 m, depth, D =12.4, breadth, 
B=21.6 m, draft, d =10.0 m, DW=15000 tons, block 
coefficient, Cb=0.75. The still water bending moment in 
hogging and sagging are given according to IACS 
(2012), Msw,h

CSR=407616.4 kNm, Msw,s
CSR=-345328.99 

kNm and the wave-induced moments Mw,h
CSR= 

522115.4 kNm and Mw,s
CSR=-584402.9 kNm 

respectively. 
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Figure 1 Global (up) and local (down) loads 

 
The local static and dynamic pressure loads are given as 
Psw

CSR=88 kPa and Pw
CSR=13 kPa. The inertia moment 

of the midship net section with respect to the neutral 
axis is Ina = 83.53 m4 and the midship section modulus 
with respect to the bottom line is Wb = 5.88 m3. The 
yield strength is y=315 MPa and the Young modulus 
is E=210 GPa. 
The span of the longitudinal stiffener (stiffened plate) is l=2.4 
m. The distance between the longitudinal stiffeners is bp=0.8 m. 
The rest of the parameters as can be seen from  

Figure 2 are defined during the optimization process. 
 

 
 
Figure 2 Stiffened plate 

2.2 Structural load 

The studied longitudinal stiffener is subjected to axial 
stresses resulting from the vertical still water and wave-
induced bending moments, global= (Msw+Msw)/Wbotom 

ship, where  is a combination factor between the still 
water and wave induced loads ranging from 0.8 to 0.95 
depending on the assumptions (Guedes Soares, 1992, 
Wang and Moan, 1996) and it is assumed here to be a 
deterministic one of 0.9.The stiffener plate is also 
subjected to a lateral load, induced by the hydrostatic 
and dynamic local pressure, qlocal=(Psw+Pw)bp. 

The stiffened plate is assumed to be a simply 
supported beam subjected to a uniformly distributed 
lateral load, qlocal and axial tensile force 
T=A(Msw,s+Mw,s)/Wbottom ship in the case of sagging 
loading and to an axial compressive force T*= A 
(Msw,h+Mw,h)/Wbottom ship in the case of hogging 
respectively, where A is the net sectional area of the 
stiffened plate. In the present study, only the 
compressive load will be considered in the design of the 
stiffened plate. 

The differential equation of a simply supported beam 
subjected to a uniformly distributed lateral load, qlocal 
and an axial force, T can be presented as (Shimansky, 
1956, Timoshenko and Gere, 1986): 

 IVEIz Tz q x   (1) 

where the solution of the differential equation can be 
defined as: 

gs psz z z   (2) 

The general solution of the differential equation with 
respect to the displacement, zgs is given by: 

   1 2 3 4gsz A A kx A ch kx A sh kx     (3) 

and the particular solution, zps is defined as: 
2

2
ps

qx
z

T
   (4) 

The origin of the assumed coordinate system is 
located at the middle of the span of the stiffened plate. 
Since the elastic line of the beam is symmetrical with 
respect to the middle of the span of the stiffened plate 
A2=A4=0 and  

   
2

1 3
2

qx
z x A A ch kx

T
     (5) 

The coefficients A1 and A3 are defined taking into 
account the boundary conditions at the supports: 

0
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zl
x

z


  

 
 (6) 

resulting in a system of equations: 
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that defines the coefficients A1 and A3 as 
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Substituting A1 and A3 in the general solution, and 
taking that into account: 

2 2 2

global Akl l T l
u

EI EI


    (9) 

in the case of a compressive axial force load, 
T*=T<0, the maximum displacement and bending 
moment at x=0 are defined as: 

   
4

* * *

0

5

384
x o

ql
z u f u

EI
    (10) 

   
2

* * *

0
8

x o

ql
m u u   (11) 

where the magnification functions, fo
*(u*) and o

*(u*) 
with respect to the displacement, zx=0(u*) and bending 
moment, m x=0(u*), in the case T*<0, are given as: 
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where: 

*
*
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kl l T
u

EI
   and, 
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2

EI
T

l


  (14) 

In the case when u*=/2 buckling failure occurs 
since fo

*(u*)=o
*(u*)=∞. 

The maximum stresses at the middle of the beam are 
calculated as: 

max, 0x local global    
  (15) 

where 

 
 *

0
,

x
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m u
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
   (16) 
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However, due to the local outside water pressure 

load that is subjected to the bottom plate of the ship, the 
bottom line of the stiffened plate is subjected to axial 
compressive stresses as calculated by Eqn (16). 

2.3 Structural capacity 

The structural integrity of structures can be analysed, in 
the case of tensile load based on the permissible stresses 
that are as a function of yield stresses of the material 
(Figure 3) and on buckling or ultimate strength in the 
case of compressive loading (Figure 4). In both cases 
the stress-strain material property relationship is 
fundamental (Garbatov et al., 2016a).  

For the ultimate strength assessment, an idealized 

stress-strain or load-displacement relation may be used 
(see Figure 4). The ultimate limit state of structures 
represents the collapse because of the loss of stiffness 
and strength. It relates to the loss of the equilibrium in a 
party or to the entire structure from buckling and plastic 
collapse of plating, stiffened panels and supporting 
members.  

 

 
Figure 3 Material load-displacement relationship (tensile load) 

 
The elastic buckling strength in the elasto-plastic 
relationships is represented by point B and the ultimate 
strength by point C as shown in Figure 4 (Garbatov et 
al., 2016a).  

The safety margin of structures can be evaluated by 
a comparison of the ultimate strength with the extreme 
applied (design) loads, line FG as shows in Figure 4. 
The structural assessment may be performed to assess 
the ultimate strength and the damage tolerance and 
survivability.  

It has to be pointed out that the ultimate strength 
reduction is governed by many factors such as the initial 
imperfection (Tekgoz et al., 2012), boundary conditions 
and load effect (Garbatov et al., 2011), corrosion plate 
surface roughness (Silva et al., 2013), residual stresses 
(Tekgoz et al., 2013a, b, 2014) and material properties 
change (Garbatov et al., 2014) due to the corrosion 
degradation and have an adverse effect on the ultimate 
strength. 

 
Figure 4 Load-displacement relationship (compressive load)  

 
An algorithm, based on the stipulated by IACS (2012), 
a simplified method based on an incremental-iterative 
approach procedure for estimating the elasto-plastic 
failure of the stiffened plate, u leading to a beam 
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column and web local buckling of the stiffened plate, is 
employed here (Garbatov et al., 2016b). The algorithm 
estimates the stress –strain relationship and ultimate 
load capacity, u.  

3 STRUCTURAL OPTIMIZATION 

A genetic algorithm with a termination criteria is 
employed here defined as a non-dominated sorting 
generic algorithm, NSGA-II developed by Deb et al. 
(2002) in defining the best design solutions of the 
stiffened plate subjected to compressive loading. The 
objective functions and the constraints, involving the 
design variables, are nonlinear resulting in a non-linear 
optimization problem. 

Five steps in the genetic algorithm are followed 
including, 1 - generation of initial population, 2 -sorting 
the population based on the Pareto non-domination 
criteria, 3 - evaluation of any individual fitness 
according to the Pareto ranking, 4 - parent selection 
based on the individual fitness, 5 - application of genetic 
operators to generate new population, 6 - identifying the 
best non-dominated solution and finally, 7 - verifying 
the convergence and found ends the process otherwise 
return to step 3. 

The genetic algorithm NSGA-II stops when it cannot 
accommodate into a non-dominated solution set. 

3.1 Decision Variables 

The decision variables assumed here are x1 = tp, x2 = bf, x3 = tf, 
x4 = hw, x5 = tw , x={ x1, x2, x3, x4, x5} -1 (see  

Figure 2) and their range is defined as:  

,min ,maxi i ix x x  ,  1,5i   (18) 

where: 

1,minx  tmin, 1,maxx  tmax (19) 

2.minx  0.25hmin, 2.maxx  0.25hmax (20) 

3,minx  tmin, 3,maxx  tmax (21) 

4,minx hmin, 4,maxx hmax (22) 

5,minx  tmin, 5,maxx  tmax (23) 

 
where tmin=0.004m, tmax=0.025m, hmin =0.1m and 

hmax=0.25m. 

3.2 Objective functions 

The dual objective structural response considered here 
is minimizing the weight, which leads to minimizing of 
the net sectional area and minimizing the structural 
displacement, which defines a multi-objective 
optimization problem: 

 
F1=min {zx=0(b, x)} (24) 

F2=min {A(b, x)} (25) 
where zx=0(b, x) is the displacement at the middle of the 

span and A(b, x) is the net-sectional area of the stiffened 
plate, b={ y, E}-1. 

3.3 Constraints 

The dimensions of the flange, web and attached plate of 
the stiffened plate have to satisfy the following 
constraints:  

 

G1: 1 0
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p yb
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C


   (26) 

G2: 3 0
235

yw

w
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C


   (27) 

G3: 5 0
235

f y

f

b
x

C


   (28) 

G4: u(b, x)-max, x=0(b, x)>0  (29) 

G5: /2-u*(b, x)>0 (30) 
 
where bp is the space defined as a distance between the longitu-
dinal stiffeners (see Figure 1 and  

Figure 2), C=100, Cw=75, Cf=12 (IACS, 2012), 
max,x=0(b, x) is the mean value of the stresses 
calculated at the middle of the span, x=0, of the 
stiffened plate and u(b, x) is the mean value of the 
ultimate strength. 
 

 
Figure 5 Mean value stress-strain relationship, design solution 
nº 58. 

 
The type of load subjected to stiffened plate will induce 
plate buckling since the stiffener is subjected to a tensile 
load and the attached plate to compressive load. The 
numerically estimated stress-strain relationship of the 
design solution nº 58 is presented in Figure 5. 

3.4 Pareto Frontier 

The Pareto frontier (Komuro et al., 2006) is employed 
here allowing for the optimization of the two criterion, 
as they are defined in the present study as the minimum 
net sectional area and displacement, verifying all trade-
offs among the optimal design solutions of the two 
criterion. Figure 6 shows the minimization of the two 
objective functions, F1 (net sectional area) and F2 

(displacement) simultaneously. 
The curve in Figure 6 indicates the Pareto optimal 



frontier, whereby any improvement with respect to F1 
comes at the expense of F2. Each design solution, 
allocated at that frontier, represents unique design 
solution parameters. The Pareto optimal solution 
collected here 100 optimal design solutions that are 
going to be verified with respect to the target reliability 
in the next section, leading to an additional constraint in 
the optimization process. 

 

  
Figure 6 Pareto frontier 

 
The forward finite difference method (Ames, 1977) is 
used to compute the first derivation of the design 
variables as defined by the Pareto frontier with respect 
to the mean of the limit state E[g(b, x)]= E[u(b, x)]-
E[max,x=0(b, x)] by making a small perturbation in the 
corresponding variables while keeping other design 
variables constant. In this study, a 1% perturbation is 
assumed in each of the variables. The sensitivity of the 
design variables is calculated by: 
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where x={ x1, x2, x3, x4, x5}-1 and b={ y, E}-1 and 

are shown in Figure 7. 
As can be seen from Figure 7, the most sensitive 

parameters in defining the design solutions is tp 
followed by tw, tf, hw and bf. However, bp and l are kept 
constant and they are not a part of the design solution 
here. 

 
Figure 7 Design variable sensitivities with respect to the limit 
state stresses, design solution nº 58. 

4 RELIABILITY-BASED DESIGN 
OPTIMIZATION 

The reliability analysis is incorporated into the 
optimization procedure, which is referred to here as a 
reliability-based design optimization, RBDO. The 
statistical nature of the constraints and design problems 
are defined in the objective function and probabilistic 
constraints. The probabilistic constraint can specify the 
required reliability target level. 

The formation of RBDO is similar to the one of the 
optimization where the objective limits state function), 
g(b, x) is minimized and it is subject to constraints, 
where b is the vector of the deterministic design 
variables and x is the vector of the random variables. 

The limit state function here is defined as: 

     max, 0, , ,u xg    b x b x b x    (32) 

and the safety index is defined as: 

targetg    (33) 

where target is the required target safety index and, g is 
the safety index of the probabilistic constraints.  

The reliability analysis performed here is using the 
FORM techniques that identify a set of basic random 
variables, which influence the failure mode or the limit-
state under consideration. The limit-state function 
defines a failure surface when equals to 0, which is in 
fact an (n-1) dimensional surface in the space of n basic 
variables. This surface divides the basic variable space 
in a safe region, where g(b, x)>0 and an unsafe region 
where g(b, x)<0. The failure probability of a structural 
component with respect to a single failure mode can 
formally be written as: 

  0fP P g   b,x  (34) 

where Pf denotes the probability of failure. In practical 
applications. The FORM methods provide a way of 
evaluating the reliability efficiently with reasonably 
good accuracy as proposed by Hasofer and Lind (1974), 
Rackwitz and Filessler (1978), Ditlevsen (1979). 

The required safety index is defined here as target. 
The Beta index of all feasible design solutions, as 
defined by the Pareto frontier, is compared to the 
required target safety index, where min{target -i} is 
the best reliability based design solution. 

Seven deterministic variables are considered here as 
b1 = tp, b2 = bf, b3 = tf, b4 = hw, b5 = tw, b6 =y, b7=E, and 
ten random variables x1 = Mw,BL,hog, x2=Pw,BL,h, x3 = 
Msw,BL,h, x4 = Psw,BL,h, x5 = u, x6= Xu, x7 = Xp,sw, x8 = 
Xm,sw, x9 = Xp,d, x10 = Xm,d are considered here, where 
x={Mw,BL,hog, Pw,BL,h, Msw,BL,h, Psw,BL,h, u, Xu, Xp,sw, Xm,sw, 
Xp,d, Xm,d}

-1 and b={tp, bf, tf, hw, tw, y, E}-1. 
The lateral local load is defined as qlocal.=(Xp,sw 

Psw,BL,h+Xp,w Pw,BL,h)b and the net-sectional stresses, 
resulting from the global bending load, is global= (Xm,sw 

Msw,BL,h +Xm,w Mw,BL,h) /Wb. u is the ultimate stress 
capacity with a model uncertainty factor Xu, which is 



assumed to be described by the Normal probability 
density function, Nx,u(1.05, 0.1).  

The model uncertainty factor Xm,w accounts for the 
uncertainties in the wave induced vertical bending 
moment calculation, where Xm,wl accounts for the 
uncertainties in the linear response calculation and Xm,nl 
for the nonlinear effects. The total uncertainty of the 
random variable Xm,w BL with a mean value and 
coefficient of variation determined by:  

E(Xm,w)=E(Xm,w,l)E(Xm,w,nl) (35) 

Cov(Xm,w)=[(1+Cov(Xm,w,l)
2)(1+Cov(Xm,w,nl)

2)-1] (36) 

m,w=Cov(Xm,w) E[Xm,w]  (37) 
resulting in Xm,w~Nx,m,w(1, 0.1) and the model 
uncertainty factor with respect to the still water load 
is Xm,sw~Nx,m,sw(1, 0.1) and with respect to the local 
pressure load are modelled by Xp,sw~Np,sw(1, 0.1) and 
Xp,w~Np,w(0.95, 0.095). 

The fraction of time spent in each load condition may 
be estimated based on the statistical analysis of the 
operational profile of the tanker ship. The assumed 
operational profile here is: full load, pFL=0.4, ballast 
load, pBL=0.4, partial load, pPL=0.1 and harbour load, 
pHL=0.1. The vertical wave-induced bending moment is 
in sagging in the full loading condition and in hogging 
in ballast and partial loading conditions. The still water 
bending moment is in sagging in full loading and in 
hogging in ballast and partial loading conditions. The 
ballast loading case is used in the present analysis since 
it transmits a compressive load to the stiffened plate at 
the bottom of the ship. 

The still water bending moment is fitted to a Normal 
distribution. The statistical descriptors of the still water 
bending moment are defined by the regression 
equations as a function of the length of the ship, L and 
dead-weight ratio, W= (DWT/Full load) as proposed by 
Guedes Soares and Moan (1988), Guedes Soares (1990) 
and the loads are taken as prescribed by the 
Classification Societies Rules (IACS, 2012). 

The statistical descriptors of the still water bending 
moment in the ballast loading case are Nm,sw,h,BL(192 
MN.m, 73 MN.m) and for the local pressure load, 
Np,sw,h,BL(0.044 MPa, 0.017 MPa). The still water load 
is in a hogging condition for the ballast load condition. 

The stochastic model of the vertical wave-induced 
bending moment, as proposed by Guedes Soares et al. 
(1996), is employed here. The distribution of the 
extreme values of the wave-induced bending moment at 
a random point of time, over a specified time period, is 
assumed as a Gumbel distribution, considering that the 
wave-induced bending moment can be represented as a 
stationary Gaussian process (short-term analysis), then 
the vertical wave-induced bending moment, Mw

CSR as 
given by CSR, may be modelled as a Weibull 
distribution with a probability of exceedance of 10-8. 

The Gumbel distribution, G(m, m) for the extreme 
values of the vertical wave-induced bending moment, 
over the reference period Tr, is derived based on the 
shape, h and scale,  factors of the Weibull distribution 
function, W(q, h) as proposed by Guedes Soares et al. 

(1996), where q is the scale factor and h is the shape 
parameter: 

  ln
h

m n    (38) 

  
 1

ln
h h

m

q
n

h





  (39) 
where m and m are the parameters of the Gumbel 
distribution, n is the mean number of load cycles, 
expected over the reference time period Tr, for a given 
mean value wave period Tw. It is also assumed here that 
Tr=1 year and Tw=8 sec. The mean number of the load 
cycles ni is calculated as ni=piTr/Tw, when the ship is in 
different seagoing conditions for i= BL, BL, PL and HL. 

The extreme value of the vertical wave-induced 
bending moment in the ballast loading condition are 
defined by the Gumbel distribution as Gm,w,h,BL(607 
MN.m, 29 MN.m) and for local pressure load as 
Gp,w,h,BL(0.013 MPa, 0.001 MPa) respectively.  

The 5% confidence level value of the ultimate 
stresses, u

5% is calculated by an algorithm as stipulated 
by IACS (2012), which is based on an incremental-
iterative approach procedure for estimating the elasto-
plastic failure of the stiffened plate, u (Garbatov et al., 
2016b). Additionally, it is assumed that CoV is 0.08 and 
the estimated value is fitted to the Log-normal 
probability density function. 

The deterministic variables b1 to b5 are defined by 
the Pareto frontier and y=315 MPa and E=206 GPa. 

The reliability is performed based on FORM and 
all random variables are considered as non-correlated 
ones. Applying FORM as a decision tool, the 
estimated probability of failure needs to be compared 
to an accepted target level. The target levels depend 
on different factors as reported by Moan (1998). The 
target level adapted here is related to failure cause and 
mode, which may result for a redundant structure in 
Pf=10-3 (=3.09) for less serious and Pf=10-4 (=3.71) 
for serious consequences of failure values of the 
acceptable annual probability of failure (DnV, 1992). 

5 RESULTS AND DISCUTIONS 

The Beta index, as a function of the two objective 
functions, is presented in Figure 8. The minimum and 
maximum values of the Beta index of all design 
solutions at the Pareto frontier are 0.8 and 7.9. The 
design solution nº 58, =3.7 fits all constrains of the two 
objective functions and the required safety target level, 
as defined to be here, target=3.7.  

Figure 8 shows that the maximum Beta index is 
located in the lower right hand side where the maximum 
net sectional area and minimum displacement are 
located and the minimum Beta is located in the upper 
left side, where the maximum displacement and 
minimum net sectional area are placed. The size of the 
bubble represents the value of the Beta index. 

 



 
Figure 8 Beta index as a function of the net sectional area and 
displacement at the Pareto frontier 

 
Table 1 Topology of stiffened plate 

nº  tp, m bf, m tf, m hw, m tw, m 

14 2.0 0.009 0.038 0.004 0.146 0.004 

58 3.7 0.009 0.044 0.006 0.174 0.005 

43 5.0 0.009 0.058 0.008 0.201 0.006 

 
 
Figure 9 shows the Beta index of the design solutions as 
a function of the net sectional area and displacement. 
The topology of the stiffened plate for the design 
solution nº 14 (=2.0), nº 58 (=3.7) and nº 43 (=5.0) 
are presented in Table 1. The design values of the 
random variables of the design solution nº 58 are 
presented in Table 2. 

 

 
 
Figure 9 Beta index as a function of the net sectional area (left) 
and displacement (right) 

 
The importance of the contribution of each random 
variable to the limit state function g*(b, x) at the design 
point can be assessed by the sensitivity factors, which 
are determined as:  
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Table 2 Design values of random variables, design solution nº 
58, =3.7 

M*w,h,BL, 

MNm 

P*w,h,BL, 

MPa 

M*sw,h,BL, 

MNm 

P*sw,h,BL, 

MPa 

*u, 

MPa 

619.107 0.013 295.329 0.062 272.043 

X*m,w X*p,w X*m,sw X*p,sw *Xu 

1.103 0.956 1.054 1.036 0.302 

 

 
Figure 10 Sensitivity indexes of the random variables, nº 58, 
=3.7 

 

 
Figure 11 Partial safety factors, nº 58, =3.7 

 
A positive sensitivity indicates that with an increase in 
the variable results in an increase in the limit state 
function, which will reduce the probability of failure 
and contributes to an increase in reliability.  

The most important random variable in the present 
reliability analysis is X,u, followed by Psw, u and Xp,sw. 
The lateral load and axial global stresses and associated 
uncertainty modelling factors contribute negatively to 
the structural capacity and reliability (see Figure 10). 

Partial safety factors can be estimated based on the 
characteristic values of u

c, Msw
CSR, Mw

CSR, Psw
CSR, 

Pw
CSR calculated at 5% confidence level of the original 

probability density function and as provided by CSR 
respectively. The design values of all parameters 
involved in the limit state functions are M*

w, P*
w, M*

sw, 
P*

sw, *
u, X

*
,u, X

*
p,sw, X*

m,sw, X*
p,w, X*

m,w are respecting 
the Beta reliability index, which in the case of the design 
solution nº 58 is =3.7 and the partial safety factors are 
defined as: 
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The resulting partial safety factors can be used in the 
preliminary design by satisfying the following design 
criterion: 

 max, 0
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,u
x local global

u
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
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 


    (43) 



where: 

 CSR CSR

local psw sw pw w pq P P b      (44) 

  /CSR CSR

global msw sw mw w bottom shipM M W       (45) 

 
The estimated partial safety factors for the analysed 

stiffened plate here are presented in Figure 11. 
If the cost of manufacturing needs to be accounted 

for, then the risk of losing the stiffened plate as an 
integral part of the ship hull may be calculated as: 

Risk=(Pf )(C)  (46) 

where Pf=1-R, is the probability of failure, R=(-) is 
the reliability and C is the consequences measured by 
the cost of the material and construction are assumed 
here as 2500USD/ton. The estimated risk as a function 
of displacement is shown in Figure 12. 

 

 
Figure 12 Risk as a function of displacement 

 
The already discussed design solutions 14, 58 and 43 
take risk values of 7.7, 0.04 and 0.00013 respectively, 
resulting from the cost values of 384.2, 397.2 and 425.7 
USD and probability of failure of 0.02, 0.0001 and 3E-
07. 

6 CONCLUSION 

The objective of this work was to perform a multi 
objective nonlinear structural optimization of a stiffened 
plate subjected to combined stochastic compressive 
loads accounting for the ultimate strength and reliability 
based constraints in the design. The solution of a dual 
objective structural response, in minimizing the weight 
and structural displacement, was considered. The Pareto 
frontier solution was used to define the feasible surface 
solution of the design variables.  

The reliability index, which defines the shortest 
distance from the origin to the limit-state boundary, was 
employed to identify the topology of the stiffened plate 
as a part of the Pareto frontier solution. The sensitivities 
of the design and random variables were analysed 
demonstrating the most influencing ones. Partial safety 
factors were derived that can be used in the conception 

design, avoiding a complex structural analysis, which is 
one of the objective of the project SHIPLYS.  

The presented methodology is flexible and 
demonstrated a good capacity to be used in structural 
design of complex systems. 
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